Complex Analysis: Resit Exam

Aletta Jacobshal 03, Friday 8 April 2016, 14:00-17:00
Exam duration: 3 hours

Instructions - read carefully before starting

- Do not forget to very clearly write your full name and student number on each answer sheet and on the envelope. Do not seal the ennvelope.
- The exam consists of 6 questions; answer all of them.
- The total number of points is 100 and 10 points are "free". The exam grade is the total number of points divided by 10 .
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas, theorems, formulas, etc.) you must explain why the conditions for using such results are satisfied.
- You are allowed to have a 2 -sided A4-sized paper with handwritten notes.

Question 1 (12 points)

(a) (6 points) Verify that the function $f(z)=(z+i)^{2}$ satisfies the Cauchy-Riemann equations.
(b) (6 points) Compute the Taylor series of the function $f(z)=(z+i)^{2}$ around $z_{0}=1 \in \mathbb{C}$. What is the domain where this Taylor series converges?

Question 2 (18 points)

Consider the function

$$
f(z)=\frac{e^{-i z}}{z^{2}+4} .
$$

(a) (6 points) Compute the residue of $f(z)$ at each one of the singularities of $f(z)$.
(b) (12 points) Compute the principal value

$$
\mathrm{pv} \int_{-\infty}^{\infty} \frac{e^{-i x}}{x^{2}+4} d x
$$

Question 3 (14 points)

Consider the branch $f(z)=\mathcal{L}_{2 \pi}(z)$ of the logarithm.
(a) (6 points) Compute $f(-e)$ and $f^{\prime}(-e)$. Write the results in Cartesian form.
(b) (8 points) Evaluate the limits $\lim _{\varepsilon \rightarrow 0^{+}} f(x+i \varepsilon)$ and $\lim _{\varepsilon \rightarrow 0^{+}} f(x-i \varepsilon)$ for $x>0$.

Question 4 (14 points)

Consider the function

$$
f(z)=\frac{z^{2}}{z-2} .
$$

(a) (4 points) Determine the singularities of $f(z)$ and their type.
(b) (10 points) Compute the Laurent series $\sum_{j=-\infty}^{\infty} a_{j} z^{j}$ of the function $f(z)$ in the domain $|z|>2$. What is the value of a_{-1} ?

Question 5 (16 points)

(a) (6 points) Given the function

$$
f(z)=\frac{z^{3}(z-3 i)(z+1)^{2}}{z^{2}+2 i},
$$

evaluate the integral

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z
$$

where C is the positively oriented circular contour with $|z|=2$.
(b) (10 points) Use Rouchés theorem to show that the polynomial $P(z)=z^{3}+\varepsilon\left(z^{2}+1\right)$, where $0<\varepsilon<8 / 5$, has exactly 3 roots in the disk $|z|<2$.

Question 6 (16 points)

(a) (8 points) Show that

$$
\left|\int_{C} \frac{e^{z}}{\bar{z}+2} d z\right| \leq \pi e^{2},
$$

where C is the positively oriented circle $|z-1|=1$.
(b) (8 points) Suppose that $f(z)$ is an entire function such that $f(z) / z^{2}$ is bounded for $|z| \geq R$, where $R>0$. Show that $f(z)$ is a polynomial of degree at most 2 .

End of the exam (Total: 90 points)

